拨号18861759551

你的位置:首页 > 产品展示 > 光纤器件 > 单模光纤 >Thorlabs掺铒单模和大模场光纤

产品详细页
Thorlabs掺铒单模和大模场光纤

Thorlabs掺铒单模和大模场光纤

  • 产品型号:
  • 更新时间:2023-12-19
  • 产品介绍:Thorlabs掺铒单模和大模场光纤。Liekki™掺铒光纤是适用于泵浦波长为980 nm或者1480 nm、发射波长在C和L通讯波段(分别是1530 - 1565 nm或1565 - 1625 nm)的单模大模场光纤。MetroGain™掺铒单模光纤具有高掺杂浓度,适用于长度较短的设备,发射波长也在C和L波段。
  • 厂商性质:代理商
  • 在线留言

产品介绍

品牌Thorlabs价格区间面议
组件类别光学元件应用领域电子

Thorlabs掺铒单模和大模场光纤

 

Thorlabs掺铒单模和大模场光纤特性

掺铒光纤,发射波段在1530 - 1610 nm

提供纤芯泵浦单模光纤和大模场光纤

行业标准Ø125 µm包层直径,易于操作,熔接和制作终端

Thorlabs提供两类掺铒有源光纤。Liekki™掺铒光纤是适用于泵浦波长为980 nm或者1480 nm、发射波长在C和L通讯波段(分别是1530 - 1565 nm或1565 - 1625 nm)的单模大模场光纤。MetroGain™掺铒单模光纤具有高掺杂浓度,适用于长度较短的设备,发射波长也在C和L波段。

 

 

Item #

Type

Peak Core
 Absorption

Pump
 Type

MFD
 (at 1550 nm)

Cladding
 Diameter

ER30-4/125

SMa

30 ± 3 dB/mc

Core

6.5 ± 0.5 μm

125 ± 2 μm

ER110-4/125

110 ± 10 dB/mc

ER16-8/125

LMAb

16 ± 3 dB/mc

9.5 ± 0.8 μm

ER80-8/125

8 ± 8 dB/mc

M5-980-125

SMa

4.5 - 5.5 dB/md

5.4 - 7.1 dB/me

5.5 - 6.3 µm

125 ± 1 μm

M12-980-125

11.0 - 13.0 dB/md

16.0 - 20.0 dB/me

5.7 - 6.6 µm

单模

大模场面积

在1530 nm测量

在980 nm测量

在1531 nm测量

 

Active Fibers Selection Guide

Ytterbium-Doped SM and LMA

Ytterbium-Doped PM

Erbium-Doped SM and LMA

 

Liekki掺铒单模和大模场面积有源光纤

 

 

Item #

ER30-4/125

ER110-4/125

ER16-8/125

ER80-8/125

Peak Core Absorption @ 1530 nm

30 ± 3 dB/m

110 ± 10 dB/m

16 ± 3 dB/m

8 ± 8 dB/m

MFD

6.5 ± 0.5 μm

6.5 ± 0.5 μm

9.5 ± 0.8 μm

9.5 ± 0.8 μm

Numerical Aperture (NA, Nominal)

0.2

0.2

0.13

0.13

Cut-Off Wavelength

890 ± 90 nm

890 ± 90 nm

1100 - 1400 nm

1250 ± 150 nm

Cladding Diameter

125 ± 2 μm

125 ± 2 μm

125 ± 2 μm

125 ± 2 μm

Cladding Geometry

Round

Round

Round

Round

Coating (Second Cladding) Diameter

245 ± 15 μm

245 ± 15 μm

245 ± 15 μm

245 ± 15 μm

Coating Material

High Index Acrylate

High Index Acrylate

High Index Acrylate

High Index Acrylate

Core Concentricity Error

< 0.7 μm

< 0.7 μm

< 0.7 μm

< 0.7 μm

Proof Test

>1%

>1%

>100 kpsi

>1%

Core Index

Proprietarya

Cladding Index

Proprietarya

很遗憾,我们无法提供这个已申请zhuan利的信息。

Fibercore MetroGain掺铒单模有源光纤

Item #

M5-980-125

M12-980-125

MFD (Nominal)

5.5 - 6.3 µm at 1550 nm

5.7 - 6.6 µm at 1550 nm

Emission Wavelength

C-Band
 (1530 - 1565 nm)

L-Band
 (1565 - 1625 nm)

Core Absorption @ 980 nm

4.5 - 5.5 dB/m

11.0 - 13.0 dB/m

Core Absorption @ 1531 nm

5.4 - 7.1 dB/m

16.0 - 20.0 dB/m

Core Numerical Aperture (NA, Nominal)

0.21 - 0.24

0.21 - 0.24

Cut-Off Wavelength

900 - 970 nm

900 - 970 nm

Cladding Diameter

125 ± 1 μm

125 ± 1 μm

Cladding Geometry

Round

Round

Coating Diameter (Nominal)

245 ± 15 μm

245 ± 15 μm

Coating Material

Dual Acrylate

Dual Acrylate

Background Loss

< 10 dB/km

< 20 dB/km

Core Concentricity Error

≤0.5 μm

≤0.5 μm

Proof Test

1% (100 kpsi)

Core Index

Proprietarya

Cladding Index

Proprietarya

很遗憾,我们无法提供这个已申请zhuan利的信息。

掺鉺光纤吸收图

 


    对掺铒光纤ER30-4/125(长约5米)和ER80-8/125(长约1米)进行了群延迟、色散和差分群延迟检测。结果如下。

    群延迟

    以下是ER30-4/125和ER80-8/125掺铒光纤在三种不同的泵浦功率下群延迟(GD)关于波长的函数曲线。群延迟的概念是信号(例如,调制波前的特殊点)中的信息传输光学路径长度所需要的时间。

     

    色散

    以下是ER30-4/125和ER80-8/125掺鉺光纤在三种不同的泵浦功率下色散(CD)关于波长的函数曲线。色散是群延迟与波长关系图的局部坡度。

    差分群延迟

    以下是掺光纤ER30-4/125和ER80-8/125在三种不同的泵浦功率下差分群延迟(DGD)关于波长的函数曲线。差分群延迟被定义为所有偏振态的大群延迟变化。

      损伤阀值

      激光诱导的光纤损伤

      以下教程详述了无终端(裸露的)、有终端光纤以及其他基于激光光源的光纤元件的损伤机制,包括空气-玻璃界面(自由空间耦合或使用接头时)的损伤机制和光纤玻璃内的损伤机制。诸如裸纤、光纤跳线或熔接耦合器等光纤元件可能受到多种潜在的损伤(比如,接头、光纤端面和装置本身)。光纤适用的大功率始终受到这些损伤机制的小值的限制。

      虽然可以使用比例关系和一般规则估算损伤阈值,但是,光纤的损伤阈值在很大程度上取决于应用和特定用户。用户可以以此教程为指南,估算大程度降低损伤风险的安全功率水平。如果遵守了所有恰当的制备和适用性指导,用户应该能够在的大功率水平以下操作光纤元件;如果有元件并未大功率,用户应该遵守下面描述的"实际安全水平"该,以安全操作相关元件。可能降低功率适用能力并给光纤元件造成损伤的因素包括,但不限于,光纤耦合时未对准、光纤端面受到污染或光纤本身有瑕疵。关于特定应用中光纤功率适用能力的深入讨论,请联系技术支持techsupport-cn@thorlabs.com。

       

      Quick Links

      Damage at the Air / Glass Interface

      Intrinsic Damage Threshold

      Preparation and Handling of Optical Fibers

       

      空气-玻璃界面的损伤

      空气/玻璃界面有几种潜在的损伤机制。自由空间耦合或使用光学接头匹配两根光纤时,光会入射到这个界面。如果光的强度很高,就会降低功率的适用性,并给光纤造成性损伤。而对于使用环氧树脂将接头与光纤固定的终端光纤而言,高强度的光产生的热量会使环氧树脂熔化,进而在光路中的光纤表面留下残留物。

       

      损伤的光纤端面

        未损伤的光纤端面

        裸纤端面的损伤机制

        光纤端面的损伤机制可以建模为大光学元件,紫外熔融石英基底的工业标准损伤阈值适用于基于石英的光纤(参考右表)。但是与大光学元件不同,与光纤空气/璃界面相关的表面积和光束直径都非常小,耦合单模(SM)光纤时尤其如此,因此,对于给定的功率密度,入射到光束直径较小的光纤的功率需要比较低。

        右表列出了两种光功率密度阈值:一种理论损伤阈值,一种"实际安全水平"。一般而言,理论损伤阈值代表在光纤端面和耦合条件非常好的情况下,可以入射到光纤端面且没有损伤风险的大功率密度估算值。而"实际安全水平"功率密度代表光纤损伤的低风险。超过实际安全水平操作光纤或元件也是有可以的,但用户必须遵守恰当的适用性说明,并在使用前在低功率下验证性能。

        计算单模光纤和多模光纤的有效面积

        单模光纤的有效面积是通过模场直径(MFD)定义的,它是光通过光纤的横截面积,包括纤芯以及部分包层。耦合到单模光纤时,入射光束的直径必须匹配光纤的MFD,才能达到良好的耦合效率。

        例如,SM400单模光纤在400 nm下工作的模场直径(MFD)大约是Ø3 µm,而SMF-28 Ultra单模光纤在1550 nm下工作的MFD为Ø10.5 µm。则两种光纤的有效面积可以根据下面来计算:

        SM400 Fiber: Area= Pi x (MFD/2)2 = Pi x (1.5µm)2 = 7.07 µm2= 7.07 x 10-8cm2
        SMF-28 Ultra Fiber: Area = Pi x (MFD/2)2 = Pi x (5.25 µm)2= 86.6 µm2= 8.66 x 10-7cm2

        为了估算光纤端面适用的功率水平,将功率密度乘以有效面积。请注意,该计算假设的是光束具有均匀的强度分布,但其实,单模光纤中的大多数激光束都是高斯形状,使得光束中心的密度比边缘处更高,因此,这些计算值将略高于损伤阈值或实际安全水平对应的功率。假设使用连续光源,通过估算的功率密度,就可以确定对应的功率水平:

        SM400 Fiber: 7.07 x 10-8cm2x 1MW/cm2= 7.1 x10-8MW =71 mW (理论损伤阈值)

        7.07 x 10-8cm2x 250 kW/cm2= 1.8 x10-5kW = 18 mW (实际安全水平)

        SMF-28 Ultra Fiber: 8.66 x 10-7cm2x 1MW/cm2= 8.7 x10-7MW =870mW (理论损伤阈值)
        8.66 x 10-7cm2x 250 kW/cm2= 2.1 x10-4kW =210 mW (实际安全水平)

        多模(MM)光纤的有效面积由纤芯直径确定,一般要远大于SM光纤的MFD值。如要获得佳耦合效果,Thorlabs建议光束的光斑大小聚焦到纤芯直径的70 - 80%。由于多模光纤的有效面积较大,降低了光纤端面的功率密度,因此,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到多模光纤中。

         

        Estimated Optical Power Densities on Air / Glass Interfacea

        Type

        Theoretical Damage Thresholdb

        Practical Safe Levelc

        CW(Average Power)

        ~1 MW/cm2

        ~250 kW/cm2

        10 ns Pulsed(Peak Power)

        ~5 GW/cm2

        ~1 GW/cm2

         

        所有值针对无终端(裸露)的石英光纤,适用于自由空间耦合到洁净的光纤端面。

        这是可以入射到光纤端面且没有损伤风险的大功率密度估算值。用户在高功率下工作前,必须验证系统中光纤元件的性能与可靠性,因其与系统有着紧密的关系。

        这是在大多数工作条件下,入射到光纤端面且不会损伤光纤的安全功率密度估算值。

        插芯/接头终端相关的损伤机制

        有终端接头的光纤要考虑更多的功率适用条件。光纤一般通过环氧树脂粘合到陶瓷或不锈钢插芯中。光通过接头耦合到光纤时,没有进入纤芯并在光纤中传播的光会散射到光纤的外层,再进入插芯中,而环氧树脂用来将光纤固定在插芯中。如果光足够强,就可以熔化环氧树脂,使其气化,并在接头表面留下残渣。这样,光纤端面就出现了局部吸收点,造成耦合效率降低,散射增加,进而出现损伤。

        与环氧树脂相关的损伤取决于波长,出于以下几个原因。一般而言,短波长的光比长波长的光散射更强。由于短波长单模光纤的MFD较小,且产生更多的散射光,则耦合时的偏移也更大。

        为了大程度地减小熔化环氧树脂的风险,可以在光纤端面附近的光纤与插芯之间构建无环氧树脂的气隙光纤接头。我们的高功率多模光纤跳线就使用了这种设计特点的接头。

        曲线图展现了带终端的单模石英光纤的大概功率适用水平。每条线展示了考虑具体损伤机制估算的功率水平。大功率适用性受到所有相关损伤机制的低功率水平限制(由实线表示)。

        确定具有多种损伤机制的功率适用性

        光纤跳线或组件可能受到多种途径的损伤(比如,光纤跳线),而光纤适用的大功率始终受到与该光纤组件相关的低损伤阈值的限制。

        例如,右边曲线图展现了由于光纤端面损伤和光学接头造成的损伤而导致单模光纤跳线功率适用性受到限制的估算值。有终端的光纤在给定波长下适用的总功率受到在任一给定波长下,两种限制之中的较小值限制(由实线表示)。在488 nm左右工作的单模光纤主要受到光纤端面损伤的限制(蓝色实线),而在1550
        nm下工作的光纤受到接头造成的损伤的限制(红色实线)。

        对于多模光纤,有效模场由纤芯直径确定,一般要远大于SM光纤的有效模场。因此,其光纤端面上的功率密度更低,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到光纤中(图中未显示)。而插芯/接头终端的损伤限制保持不变,这样,多模光纤的大适用功率就会受到插芯和接头终端的限制。

        请注意,曲线上的值只是在合理的操作和对准步骤几乎不可能造成损伤的情况下粗略估算的功率水平值。值得注意的是,光纤经常在超过上述功率水平的条件下使用。不过,这样的应用一般需要专业用户,并在使用之前以较低的功率进行测试,尽量降低损伤风险。但即使如此,如果在较高的功率水平下使用,则这些光纤元件应该被看作实验室消耗品。

        光纤内的损伤阈值

        除了空气玻璃界面的损伤机制外,光纤本身的损伤机制也会限制光纤使用的功率水平。这些限制会影响所有的光纤组件,因为它们存在于光纤本身。光纤内的两种损伤包括弯曲损耗和光暗化损伤。

        弯曲损耗

        光在纤芯内传播入射到纤芯包层界面的角度大于临界角会使其无法全反射,光在某个区域就会射出光纤,这时候就会产生弯曲损耗。射出光纤的光一般功率密度较高,会烧坏光纤涂覆层和周围的松套管。

        有一种叫做双包层的特种光纤,允许光纤包层(第二层)也和纤芯一样用作波导,从而降低弯折损伤的风险。通过使包层/涂覆层界面的临界角高于纤芯/包层界面的临界角,射出纤芯的光就会被限制在包层内。这些光会在几厘米或者几米的距离而不是光纤内的某个局部点漏出,从而大限度地降低损伤。Thorlabs生产并销售0.22 NA双包层多模光纤,它们能将适用功率提升百万瓦的范围。

        光暗化

        光纤内的第二种损伤机制称为光暗化或负感现象,一般发生在紫外或短波长可见光,尤其是掺锗纤芯的光纤。在这些波长下工作的光纤随着曝光时间增加,衰减也会增加。引起光暗化的原因大部分未可知,但可以采取一些列措施来缓解。例如,研究发现,羟基离子(OH)含量非常低的光纤可以抵抗光暗化,其它掺杂物比如氟,也能减少光暗化。

        即使采取了上述措施,所有光纤在用于紫外光或短波长光时还是会有光暗化产生,因此用于这些波长下的光纤应该被看成消耗品。

        制备和处理光纤

        通用清洁和操作指南

        建议将这些通用清洁和操作指南用于所有的光纤产品。而对于具体的产品,用户还是应该根据辅助文献或手册中给出的具体指南操作。只有遵守了所有恰当的清洁和操作步骤,损伤阈值的计算才会适用。

        安装或集成光纤(有终端的光纤或裸纤)前应该关掉所有光源,以避免聚焦的光束入射在接头或光纤的脆弱部分而造成损伤。

        光纤适用的功率直接与光纤/接头端面的质量相关。将光纤连接到光学系统前,一定要检查光纤的末端。端面应该是干净的,没有污垢和其它可能导致耦合光散射的污染物。另外,如果是裸纤,使用前应该剪切,用户应该检查光纤末端,确保切面质量良好。

        如果将光纤熔接到光学系统,用户先应该在低功率下验证熔接的质量良好,然后在高功率下使用。熔接质量差,会增加光在熔接界面的散射,从而成为光纤损伤的来源。

        对准系统和优化耦合时,用户应该使用低功率;这样可以大程度地减少光纤其他部分(非纤芯)的曝光。如果高功率光束聚焦在包层、涂覆层或接头,有可能产生散射光造成的损伤。

        高功率下使用光纤的注意事项

        一般而言,光纤和光纤元件应该要在安全功率水平限制之内工作,但在理想的条件下(佳的光学对准和非常干净的光纤端面),光纤元件适用的功率可能会增大。用户先必须在他们的系统内验证光纤的性能和稳定性,然后再提高输入或输出功率,遵守所有所需的安全和操作指导。以下事项是一些有用的建议,有助于考虑在光纤或组件中增大光学功率。

        要防止光纤损伤光耦合进光纤的对准步骤也是重要的。在对准过程中,在取得佳耦合前,光很容易就聚焦到光纤某部位而不是纤芯。如果高功率光束聚焦在包层或光纤其它部位时,会发生散射引起损伤

        使用光纤熔接机将光纤组件熔接到系统中,可以增大适用的功率,因为它可以大程度地减少空气/光纤界面损伤的可能性。用户应该遵守所有恰当的指导来制备,并进行高质量的光纤熔接。熔接质量差可能导致散射,或在熔接界面局部形成高热区域,从而损伤光纤。

        连接光纤或组件之后,应该在低功率下使用光源测试并对准系统。然后将系统功率缓慢增加到所希望的输出功率,同时周期性地验证所有组件对准良好,耦合效率相对光学耦合功率没有变化。

        由于剧烈弯曲光纤造成的弯曲损耗可能使光从受到应力的区域漏出。在高功率下工作时,大量的光从很小的区域(受到应力的区域)逃出,从而在局部形成产生高热量,进而损伤光纤。请在操作过程中不要破坏或突然弯曲光纤,以尽可能地减少弯曲损耗。

        用户应该针对给定的应用选择合适的光纤。例如,大模场光纤可以良好地代替标准的单模光纤在高功率应用中使用,因为前者可以提供更佳的光束质量,更大的MFD,且可以降低空气/光纤界面的功率密度。

        阶跃折射率石英单模光纤一般不用于紫外光或高峰值功率脉冲应用,因为这些应用与高空间功率密度相关。

         

        Liekki™掺鉺单模光纤和大模场光纤

        针对于发射波长从1530到1610 nm,泵浦波长为980 nm和1480 nm

        几何特性使双折射效应很低,并且有出色的熔接特性

        对于泵浦激光单模光纤的典型熔接损耗小于0.1 dB

        对于SMF-28e+光纤的典型熔接损耗小于0.15 dB

        应用

        C-和L-波段密集波分复用、Metro、有线电视和无源光网络

        受激自发辐射来源

        连续和脉冲激光器和放大器

        Liekki高掺鉺光纤适用于从1530到1610 nm波长区域(C和L波段)的光纤激光器和放大器。这些光纤覆盖了广泛的应用领域,从通讯放大器(掺铒光纤放大器)到高功率无源光网络/有线电视助推器,以及用于仪表、工业、医疗的超短脉冲放大器。这些高掺杂的的光纤具有标准的Ø125µm的包层直径。

         

        Key  Features

        ER30-4/125

        Extremely high, >50% conversion
         efficiency in the L band

        ER110-4/125

        Extremely high doping concentration  for short
         device length and reduced nonlinearity

        ER16-8/125

        Good spliceability, power conversion efficiency,
         and spectral reproducibility

        ER80-8/125

        For 980 nm pumps with emission at  1550 nm.
         Large core and good spliceability.

           

           

          Item #

          Type

          Peak Core Absorption
           at 1530 nm

          Mode Field Diameter
           at 1550 nm

          Cladding
           Diameter

          Coating
           Diameter

          Core NA
           (Nominal)

          Cut-Off
           Wavelength

          Core
           Index

          Cladding
           Index

          ER30-4/125

          Single Mode

          30 ± 3 dB/m

          6.5 ± 0.5 µm

          125 ± 2 µm

          245 ± 15 µm

          0.2

          800 - 980 nm

          Proprietarya

          Proprietarya

          ER110-4/125

          110 ± 10 dB/m

          ER16-8/125

          Large Mode Area

          16 ± 3 dB/m

          9.5 ± 0.8 µm

          0.13

          1100 - 1400 nm

          ER80-8/125

          80 ± 8 dB/m

          很遗憾,这个信息我们已申请zhuan利,因而无法提供。

           

          产品型号

          公英制通用

          ER30-4/125

          掺铒单模光纤,30 dB/m@1530 nm,0.2 NA,标准类

          ER110-4/125

          掺铒单模光纤,110 dB/m@1530 nm,0.2 NA,实验类

          ER16-8/125

          掺铒大模场光纤,16 dB/m@1530 nm,0.13 NA,实验类

          ER80-8/125

          掺铒大模场光纤,80 dB/m@1530 nm,0.13NA,实验类

           

          MetroGain™掺鉺单模光纤

          针对泵浦光波长为980 nm和1480 nm,发射波长为C或L波段(1530 - 1565 nm或1565 - 1625 nm)

          高吸收,可用于窄增益界面或短激光腔

          MetroGain掺铒光纤对于发射波长在C和L通讯波段进行优化。M5-980-125光纤在泵浦功率为1480纳米的高功率C波段(1530-1565 nm)处非常有效。M12-980-125针对泵浦光为980 nm的L波段进行优化。与传统的工作在L波段掺鉺光纤相比,它的高吸收允许更短的有源光纤长度。

          这些光纤在光纤掺杂区对泵浦光给出了很好的模场重叠,而且依然保持出色的拼接特性。MetroGain光纤的高吸收使得它们成为光纤激光器和ASE光源的理想选择。对于光纤激光器来说,可实现极短波长,从而使得脉冲畸变小化。

          应用

          C-和L-波段光纤放大器

          ASE光源

           

             

             

            Item #

            Type

            Emission
             Wavelength

            Absorption

            MFD @ 1550 nm
             (Nominal)

            Cladding
             Diameter

            Coating Diameter
             (Nominal)

            Core NA

            Cut-Off
             Wavelength

            Core/Cladding
             Index

            M5-980-125

            Single Mode

            C-Band

            4.5 - 5.5 dB/m @ 980 nm
             5.4 - 7.1 dB/m @ 1531 nm

            5.5 - 6.3 µm

            125 ± 1 µm

            245 ± 15 µm

            0.21 - 0.24

            900 - 970 nm

            Proprietarya

            M12-980-125

            L-Band

            11.0 - 13.0 dB/m @ 980 nm
             16.0 - 20.0 dB/m @ 1531 nm

            5.7 - 6.6 µm

            很遗憾,本信息我们已申请zhuan利,因而无法提供。

             

            产品型号

            公英制通用

            M5-980-125

            掺铒单模C波段光纤,吸收率为5 dB/m @ 980 nm

            M12-980-125

            掺铒单模L波段光纤,吸收率为12 dB/m@980纳米

             

             

              留言框

              • 产品:

              • 您的单位:

              • 您的姓名:

              • 联系电话:

              • 常用邮箱:

              • 省份:

              • 详细地址:

              • 补充说明:

              • 验证码:

                请输入计算结果(填写阿拉伯数字),如:三加四=7

              联系我们

              地址:江苏省江阴市人民东路1091号1017室 传真:0510-68836817 Email:sales@rympo.com
              24小时在线客服,为您服务!

              版权所有 © 2024 江阴韵翔光电技术有限公司 备案号:苏ICP备16003332号-1 技术支持:化工仪器网 管理登陆 GoogleSitemap

              在线咨询
              QQ客服
              QQ:17041053
              电话咨询
              0510-68836815
              关注微信
              Baidu
              map