Thorlabs阶跃折射率多模光纤数值孔径0.50
- 产品型号:
- 更新时间:2023-12-19
- 产品介绍:Thorlabs阶跃折射率多模光纤数值孔径0.50Thorlabs还提供带有低羟基、数值孔径0.50的多模光纤的SMA接头跳线。如果您需要其他接头类型,我们提供ADAFCSMA1FC/PC转SMA匹配套管,可将SMA接头耦合到FC/PC接头中,以及混合跳线。详情请联系技术支持。
- 厂商性质:代理商
- 在线留言
产品介绍
品牌 | Thorlabs | 价格区间 | 面议 |
---|---|---|---|
组件类别 | 光学元件 | 应用领域 | 电子 |
Thorlabs阶跃折射率多模光纤数值孔径0.50
Thorlabs阶跃折射率多模光纤数值孔径0.50特性
较宽的紫外/可见/近红外光谱范围
300到1200 nm(高羟基)
400到2200 nm(低羟基)
静态疲劳降低,微弯曲损耗低
生物相容材料,抗辐射
可以通过环氧乙烷清洗法进行消毒
我们数值孔径为0.50的聚合物包层光纤具有高数值孔径,适合从远程照明到光动力疗法等的各种应用。光纤包裹在Tefzel®涂覆层内,工作温度的范围是-40150 °C。
Thorlabs还提供带有低羟基、数值孔径0.50的多模光纤的SMA接头跳线。如果您需要其他接头类型,我们提供ADAFCSMA1FC/PC转SMA匹配套管,可将SMA接头耦合到FC/PC接头中,以及混合跳线。详情请联系技术支持。
0.50 NA光纤接头如右下图所示,Thorlabs使用一种特殊的方法给0.50 NA光纤机上终端。将Tefzel缓冲层更进一步剥离,这样更多的包层可以接触到粘合剂,从而改善光纤与接头之间的粘合。Thorlabs在本页面上还提供低羟基光纤的预组装SMA转SMA跳线。我们也可以定制跳线。
数值孔径为0.50的光纤终端图解
Alternate Numerical Aperture Step-Index Fibers | |||
0.1 NA High-Power, | 0.22 NA High- and | 0.39 NA High- and | 0.50 NA High- and |
规格
Item # | Wavelength | Hydroxyl | Core | Cladding | Coating | Core / | Coating | Proof |
FP200URT | 300 - 1200 nm | High OH | 200 ± 5 μm | 225 ± 5 μm | 500 ± 30 μm | Pure Silica / | Tefzel | ≥100 kpsi |
FP200ERT | 400 - 2200 nm | Low OH | ||||||
FP400URT | 300 - 1200 nm | High OH | 400 ± 8 μm | 425 ± 10 μm | 730 ± 30 μm | |||
FP400ERT | 400 - 2200 nm | Low OH | ||||||
FP600URT | 300 - 1200 nm | High OH | 600 ± 10 µm | 630 ± 10 µm | 1040 ± 30 µm | |||
FP600ERT | 400 - 2200 nm | Low OH | ||||||
FP1000URT | 300 - 1200 nm | High OH | 1000 ± 15 µm | 1035 ± 15 µm | 1400 ± 50 µm | |||
FP1000ERT | 400 - 2200 nm | Low OH | ||||||
FP1500URT | 300 - 1200 nm | High OH | 1500 ± 30 µm | 1550 ± 31 µm | 2000 ± 100 µm | |||
FP1500ERT | 400 - 2200 nm | Low OH |
Item # | NA | Core Index | Clad Index | Maximum | Max Core | Bend Radius | Operating | Stripping Tool | |
Short Term | Long Term | ||||||||
FP200URT | 0.50 | 1.458434 | 1.3651 | 12 dB/km | 5 µm | 8 mm | 16 mm | -40 to 150 °C | T12S21 |
FP200ERT | 1.458965 | 1.3651 | |||||||
FP400URT | 1.458434 | 1.3651 | 7 µm | 16 mm | 32 mm | T21S31 | |||
FP400ERT | 1.458965 | 1.3651 | |||||||
FP600URT | 1.458434 | 1.3651 | 9 µm | 24 mm | 48 mm | T28S46 | |||
FP600ERT | 1.458965 | 1.3651 | |||||||
FP1000URT | 1.458434 | 1.3651 | 10 µm | 40 mm | 80 mm | M44S63 | |||
FP1000ERT | 1.458965 | 1.3651 | |||||||
FP1500URT | 1.458434 | 1.3651 | 12 µm | 75 mm | 150 mm | M63S86 | |||
FP1500ERT | 1.458965 | 1.3651 |
多模光纤教程
在光纤中引导光
光纤属于光波导,光波导是一种更为广泛的光学元件,可以利用全内反射(TIR)在固体或液体结构中限制并引导光。光纤通常可以在众多应用中使用;常见的例子包括通信、光谱学、照明和传感器。
比较常见的玻璃(石英)纤维使用一种称之为阶跃折射率光纤的结构,如右图所示。这种光纤的纤芯由一种折射率比外面包层高的材料构成。在光纤中以临界角入射时,光会在纤芯/包层界面产生全反射,而不会折射到周围的介质中。为了达到TIR的条件,发射到光纤中入射光的角度必须小于某个角度,即接收角,θacc。根据斯涅耳定律可以计算出这个角:
其中,ncore为纤芯的折射率,nclad为光纤包层的折射率,n为外部介质的折射率,θcrit为临界角,θacc为光纤的接收半角。数值孔径(NA)是一个无量纲量,由光纤制造商用来确定光纤的接收角,表示为:
对于芯径(多模)较大的阶跃折射率光纤,使用这个等式可以直接计算出NA。NA也可以由实验确定,通过追踪远场光束分布并测量光束中心与光强为大光强5%的点之间的角度即可;但是,直接计算NA得出的值更为准确。
光纤的全内反射
光纤中的模式数量
光在光纤中传播的每种可能路径即为光纤的导模。根据纤芯/包层区域的尺寸、折射率和波长,单光纤内可支持从一种到数千种模式。而其中常使用两种为单模(支持单导模)和多模(支持多种导模)。在多模光纤中,低阶模倾向于在空间上将光限制在纤芯内;而高阶模倾向于在空间上将光限制在纤芯/包层界面的附近。
使用一些简单的计算就可以估算出光纤支持的模(单模或多模)的数量。归一化频率,也就是常说的V值,是一个无量纲的数,与自由空间频率成比例,但被归为光纤的引导属性。V值表示为:
其中V为归一化频率(V值),a为纤芯半径,λ为自由空间波长。多模光纤的V值非常大;例如,芯径为Ø50 µm、数值孔径为0.39的多模光纤,在波长为1.5 µm时,V值为40.8。
对于具有较大V值的多模光纤,可以使用下式近似计算其支持的模式数量:
上面例子中,芯径为Ø50 µm、NA为0.39的多模光纤支持大约832种不同的导模,这些模可以同时穿过光纤。
单模光纤V值必须小于截止频率2.405,这表示在这个时候,光只耦合到光纤的基模中。为了满足这个条件,单模光纤的纤芯尺寸和NA要远小于同波长下的多模光纤。例如SMF-28超单模光纤的标称NA为0.14,芯径为Ø8.2 µm,在波长为1550nm时,V值为2.404。
损伤阀值
激光诱导的光纤损伤
以下教程详述了无终端(裸露的)、有终端光纤以及其他基于激光光源的光纤元件的损伤机制,包括空气-玻璃界面(自由空间耦合或使用接头时)的损伤机制和光纤玻璃内的损伤机制。诸如裸纤、光纤跳线或熔接耦合器等光纤元件可能受到多种潜在的损伤(比如,接头、光纤端面和装置本身)。光纤适用的大功率始终受到这些损伤机制的小值的限制。
虽然可以使用比例关系和一般规则估算损伤阈值,但是,光纤的损伤阈值在很大程度上取决于应用和特定用户。用户可以以此教程为指南,估算大程度降低损伤风险的安全功率水平。如果遵守了所有恰当的制备和适用性指导,用户应该能够在的大功率水平以下操作光纤元件;如果有元件并未大功率,用户应该遵守下面描述的"实际安全水平"该,以安全操作相关元件。可能降低功率适用能力并给光纤元件造成损伤的因素包括,但不限于,光纤耦合时未对准、光纤端面受到污染或光纤本身有瑕疵。关于特定应用中光纤功率适用能力的深入讨论,请联系技术支持techsupport-cn@thorlabs.com。
Quick Links |
Damage at the Air / Glass Interface |
Intrinsic Damage Threshold |
Preparation and Handling of Optical Fibers |
空气-玻璃界面的损伤
空气/玻璃界面有几种潜在的损伤机制。自由空间耦合或使用光学接头匹配两根光纤时,光会入射到这个界面。如果光的强度很高,就会降低功率的适用性,并给光纤造成性损伤。而对于使用环氧树脂将接头与光纤固定的终端光纤而言,高强度的光产生的热量会使环氧树脂熔化,进而在光路中的光纤表面留下残留物。
损伤的光纤端面
未损伤的光纤端面
多模(MM)光纤的有效面积由纤芯直径确定,一般要远大于SM光纤的MFD值。如要获得佳耦合效果,Thorlabs建议光束的光斑大小聚焦到纤芯直径的70 - 80%。由于多模光纤的有效面积较大,降低了光纤端面的功率密度,因此,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到多模光纤中。
Estimated Optical Power Densities on Air / Glass Interfacea | ||
Type | Theoretical Damage Thresholdb | Practical Safe Levelc |
CW(Average Power) | ~1 MW/cm2 | ~250 kW/cm2 |
10 ns Pulsed(Peak Power) | ~5 GW/cm2 | ~1 GW/cm2 |
所有值针对无终端(裸露)的石英光纤,适用于自由空间耦合到洁净的光纤端面。
这是可以入射到光纤端面且没有损伤风险的大功率密度估算值。用户在高功率下工作前,必须验证系统中光纤元件的性能与可靠性,因其与系统有着紧密的关系。
这是在大多数工作条件下,入射到光纤端面且不会损伤光纤的安全功率密度估算值。
插芯/接头终端相关的损伤机制
有终端接头的光纤要考虑更多的功率适用条件。光纤一般通过环氧树脂粘合到陶瓷或不锈钢插芯中。光通过接头耦合到光纤时,没有进入纤芯并在光纤中传播的光会散射到光纤的外层,再进入插芯中,而环氧树脂用来将光纤固定在插芯中。如果光足够强,就可以熔化环氧树脂,使其气化,并在接头表面留下残渣。这样,光纤端面就出现了局部吸收点,造成耦合效率降低,散射增加,进而出现损伤。
与环氧树脂相关的损伤取决于波长,出于以下几个原因。一般而言,短波长的光比长波长的光散射更强。由于短波长单模光纤的MFD较小,且产生更多的散射光,则耦合时的偏移也更大。
为了大程度地减小熔化环氧树脂的风险,可以在光纤端面附近的光纤与插芯之间构建无环氧树脂的气隙光纤接头。我们的高功率多模光纤跳线就使用了这种设计特点的接头。
曲线图展现了带终端的单模石英光纤的大概功率适用水平。每条线展示了考虑具体损伤机制估算的功率水平。大功率适用性受到所有相关损伤机制的低功率水平限制(由实线表示)。
实验观测
Thorlabs实验观测:利用多模光纤修改光束轮廓
我们在此给出探索多模光纤输出光束轮廓如何受到光束入射角影响的实验测量结果。有些应用中可能需要其他诸如高帽或甜甜圈等轮廓的光束分布,而不需要一般光学元件提供的固有高斯分布。这里,我们探索了改变聚焦激光束进入多模光纤跳线时的入射角所产生的影响。将光垂直聚焦于光纤面,会产生近高斯输出光束轮廓(图1),增大入射角则会产生高帽(图2)和甜甜圈(图3)形状的光束轮廓。这些结果展现了利用多模光纤改变光束轮廓的方法。
实验中,我们使用一根M38L01纤芯?200 μm、数值孔径0.39的阶跃折射率光纤跳线(裸纤型号FT200EMT)作为聚焦光束耦合的待测光纤。将输入光以0°、11°和15°入射到多模光纤的入射面,分别产生初始轮廓、高帽轮廓和甜甜圈轮廓。每次改变角度时,都要优化输入光纤的对准,同时用功率计监测输出功率,确保实现大的耦合。然后,在9秒的曝光时间下采集图像,并评估光束轮廓的形状。注意,曝光过程中,会在耦合光学元件之间(待测光纤之前)手动旋转1500 grit的散射片,以减少空间相干,形成干净的输出光束轮廓。
假设一种光线追迹模型,存在两种沿着多模光纤传播的常见光线:(a)子午光线,每次反射之后都通过光纤的中心轴,和(b)斜光线,不通过光纤的中心轴。下面的图片展现了实验过程中观察到的三种基本光线传播情况。图4和图6分别绘制出了子午光线和斜光线通过多模光纤的传播,以及在光纤输出端的相关理论光束分布。如图6所示,斜光线沿着光纤以与半径r为圆的内部焦散线相切的螺旋路径传播。图5描绘了子午光线和斜光线的光束传播和光束分布。我们通过改变光耦合到多模光纤的入射角,修改子午光线与斜光线的传播,使输出光束从近高斯分布(主要是子午光线,请看图1)变成高帽分布(子午光线和斜光线混合,请看图2),再变成甜甜圈分布(主要是斜光线,请看图3)。图4到图6显示的光束轮廓都在离光纤端面5 mm处获得。这些结果体现了利用标准的多模光纤跳线以一种相对低成本的方法将入射高斯轮廓修改成高帽和甜甜圈轮廓,且损耗极微。有关使用的实验装置和总结结果详情,请点击这里。
图 1.
入射角为0°时获得的近高斯光束轮廓(垂直于光纤面)
图 2.
入射角为11°时获得的高帽光束轮廓
图 3.
入射角为15°时获得的甜甜圈光束轮廓
图 4.
对应近高斯输出轮廓的子午光线传播
图 5.
对应甜甜圈轮廓的斜光线传播
图 6.
对应高帽轮廓的子午光线和斜光线传播
多模光纤选择指南
Thorlabs提供的多模裸光纤具有石英、氟化锆(ZrF4)或氟化铟(InF3)纤芯。下表详述了Thorlabs的所有多模裸光纤。点击右边栏中的曲线图标可以查看衰减曲线图。
Index Profile | NA | Fiber Type | Item # | Core Size | Wavelength Range | Attenuation |
Step Index | 0.100 | Fluorine-Doped Cladding, Enhanced Coating View These Fibers | FG010LDA | Ø10 µm | 400 to 550 nm and 700 to 1000 nm | |
FG025LJA | Ø25 µm | 400 to 550 nm and 700 to 1400 nm | ||||
FG105LVA | Ø105 µm | 400 to 2100 nm | ||||
0.22 | Glass-Clad Slilca Multimode Fiber View These Fibers | FG050UGA | Ø50 µm | 250 to 1200 nm (High OH) | ||
FG105UCA | Ø105 µm | |||||
FG200UEA | Ø200 µm | |||||
FG050LGA | Ø50 µm | 400 to 2400 nm (Low OH) | ||||
FG105LCA | Ø105 µm | |||||
FG200LEA | Ø200 µm | |||||
High Power Double TECS / Silica Cladding Multimode Fiber View These Fibers | FG200UCC | Ø200 µm | 250 to 1200 nm (High OH) | |||
FG273UEC | Ø273 µm | |||||
FG365UEC | Ø365 µm | |||||
FG550UEC | Ø550 µm | |||||
FG910UEC | Ø910 µm | |||||
FG200LCC | Ø200 µm | 400 to 2200 nm (Low OH) | ||||
FG273LEC | Ø273 µm | |||||
FG273LEC | Ø273 µm | |||||
FG550LEC | Ø550 µm | |||||
FG910LEC | Ø910 µm | |||||
Solarization-Resistant Multimode Fiber for UV Use View These Fibers | FG10CA | Ø105 µm | 180 to 1200 nm Acrylate Coating for Ease of Handling | |||
FG200AEA | Ø200 µm | |||||
FG300AEA | Ø300 µm | |||||
FG400AEA | Ø400 µm | |||||
FG600AEA | Ø600 µm | |||||
UM22-100 | Ø100 µm | 180 to 1150 nm Polyimide Coating for Use up to 300 °C | ||||
UM22-200 | Ø200 µm | |||||
UM22-300 | Ø300 µm | |||||
UM22-400 | Ø400 µm | |||||
UM22-600 | Ø600 µm | |||||
0.39 | High Power TECS Cladding Multimode Fiber View These Fibers | FT200UMT | Ø200 µm | 300 to 1200 nm (High OH) | ||
FT300UMT | Ø300 µm | |||||
FT400UMT | Ø400 µm | |||||
FT600UMT | Ø600 µm | |||||
FT800UMT | Ø800 µm | |||||
FT1000UMT | Ø1000 µm | |||||
FT1500UMT | Ø1500 µm | |||||
FT200EMT | Ø200 µm | 400 to 2200 nm (Low OH) | ||||
FT300EMT | Ø300 µm | |||||
FT400EMT | Ø400 µm | |||||
FT600EMT | Ø600 µm | |||||
FT800EMT | Ø800 µm | |||||
FT1000EMT | Ø1000 µm | |||||
FT1500EMT | Ø1500 µm | |||||
Square-Core Multimode Fiber | FP150QMT | 150 µm x 150 µm | 400 to 2200 nm | |||
0.5 | High NA Multimode Fiber View These Fibers | FP200URT | Ø200 µm | 300 to 1200 nm (High OH) | ||
FP400URT | Ø400 µm | |||||
FP600URT | Ø600 µm | |||||
FP1000URT | Ø1000 µm | |||||
FP1500URT | Ø1500 µm | |||||
FP200ERT | Ø200 µm | 400 to 2200 nm (Low OH) | ||||
FP400ERT | Ø400 µm | |||||
FP600ERT | Ø600 µm | |||||
FP1000ERT | Ø1000 µm | |||||
FP1500ERT | Ø1500 µm | |||||
0.20 | Mid-IR Fiber with Zirconium Fluoride (ZrF4) Core | Various Sizes Between | 285 nm to 4.5 µm | |||
0.20 or 0.26 | Mid-IR Fiber with Indium Fluoride (InF3) Core | Ø50 µm or Ø100 µm | 310 nm to 5.5 µm | |||
Graded Index | 0.2 | Graded-Index Fiber for Low Bend Loss View These Fibers | GIF50C | Ø50 µm | 800 to 1600 nm | |
GIF50D | ||||||
GIF50E | ||||||
0.275 | GIF625 | Ø62.5 µm | 800 to 1600 nm |
阶跃折射率多模光纤,纤芯Ø200 µm,数值孔径0.50
Item # | Wavelength | Hydroxyl | NA | Core Index | Clad Index | Core | Cladding | Coating | Core / | Coating | Stripping |
FP200URT | 300 - 1200 nm | High OH | 0.50 | 1.458434 | 1.3651 | 200 ± 5 µm | 225 ± 5 µm | 500 ± 30 µm | Pure Silica / | Tefzel | T12S21 |
FP200ERT | 400 - 2200 nm | Low OH | 1.458965 | 1.3651 |
产品型号 | 公英制通用 |
FP200URT | 多模光纤,数值孔径0.50,芯径200 µm,高羟基 |
FP200ERT | 多模光纤,数值孔径0.50,芯径200 µm,低羟基 |
阶跃折射率多模光纤,纤芯Ø400 µm,数值孔径0.50
Item # | Wavelength | Hydroxyl | NA | Core Index | Clad Index | Core | Cladding | Coating | Core / | Coating | Stripping |
FP400URT | 300 - 1200 nm | High OH | 0.50 | 1.458434 | 1.3651 | 400 ± 8 µm | 425 ± 10 µm | 730 ± 30 µm | Pure Silica / | Tefzel | T21S31 |
FP400ERT | 400 - 2200 nm | Low OH | 1.458965 | 1.3651 |
产品型号 | 公英制通用 |
FP400URT | 多模光纤,数值孔径0.50,芯径400 µm,高羟基 |
FP400ERT | 多模光纤,数值孔径0.50,芯径400 µm,低羟基 |
阶跃折射率多模光纤,纤芯Ø600 µm,数值孔径0.50
Item # | Wavelength | Hydroxyl | NA | Core Index | Clad Index | Core | Cladding | Coating | Core / | Coating | Stripping |
FP600URT | 300 - 1200 nm | High OH | 0.50 | 1.458434 | 1.3651 | 600 ± 10 µm | 630 ± 10 µm | 1040 ± 30 µm | Pure Silica / | Tefzel | T28S46 |
FP600ERT | 400 - 2200 nm | Low OH | 1.458965 | 1.3651 |
产品型号 | 公英制通用 |
FP600URT | 多模光纤,数值孔径0.50,芯径600 µm,高羟基 |
FP600ERT | 多模光纤,数值孔径0.50,芯径600 µm,低羟基 |
阶跃折射率多模光纤,纤芯Ø1000 µm,数值孔径0.50
Item # | Wavelength | Hydroxyl | NA | Core Index | Clad Index | Core | Cladding | Coating | Core / | Coating | Stripping |
FP1000URT | 300 - 1200 nm | High OH | 0.50 | 1.458434 | 1.3651 | 1000 ± 15 µm | 1035 ± 15 µm | 1400 ± 50 µm | Pure Silica / | Tefzel | M44S63 |
FP1000ERT | 400 - 2200 nm | Low OH | 1.458965 | 1.3651 |
产品型号 | 公英制通用 |
FP1000URT | 多模光纤,数值孔径0.50,芯径1000 µm,高羟基 |
FP1000ERT | 多模光纤,数值孔径0.50,芯径1000 µm,低羟基 |
阶跃折射率多模光纤,纤芯Ø1500 µm,数值孔径0.50
Item # | Wavelength | Hydroxyl | NA | Core Index | Clad Index | Core | Cladding | Coating | Core / | Coating | Stripping |
FP1500URT | 300 - 1200 nm | High OH | 0.50 | 1.458434 | 1.3651 | 1500 ± 30 µm | 1550 ± 31 µm | 2000 ± 100 µm | Pure Silica / | Tefzel | M63S86 |
FP1500ERT | 400 - 2200 nm | Low OH | 1.458965 | 1.3651 |
产品型号 | 公英制通用 |
FP1500URT | 多模光纤,数值孔径0.50,芯径1500 µm,高羟基 |
FP1500ERT | 多模光纤,数值孔径0.50,芯径1500 µm,低羟基 |
图 1.
入射角为0°时获得的近高斯光束轮廓(垂直于光纤面)
图 2.
入射角为11°时获得的高帽光束轮廓
图 3.
入射角为15°时获得的甜甜圈光束轮廓
图 4.
对应近高斯输出轮廓的子午光线传播
图 5.
对应甜甜圈轮廓的斜光线传播